A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes.

نویسندگان

  • S R Bisgrove
  • M T Simonich
  • N M Smith
  • A Sattler
  • R W Innes
چکیده

The RPS3 and RPM1 disease resistance loci of Arabidopsis confer resistance to Pseudomonas syringae strains that carry the avirulence genes avrB and avrRpm1, respectively. We have previously shown that RPS3 and RPM1 are closely linked genetically. Here, we show that RPS3 and RPM1 are in fact the same gene. We screened a mutagenized Arabidopsis population with a P. syringae strain carrying avrB and found 12 susceptible mutants. All 12 mutants were also susceptible to an isogenic strain carrying avrRpm1, indicating a loss of both RPS3 and RPM1 functions. No mutants were recovered that lost only RPS3 function. Genetic analysis of four independent mutants revealed that the lesions were in RPS3. Thus, a single gene in Arabidopsis confers resistance that is specific to two distinct pathogen avirulence genes--a gene-for-genes interaction. This observation suggests that the RPS3/RPM1 gene product can bind multiple pathogen ligands, or alternatively, that it does not function as a receptor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2.

A molecular genetic approach was used to identify and characterize plant genes that control bacterial disease resistance in Arabidopsis. A screen for mutants with altered resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) expressing the avirulence gene avrRpt2 resulted in the isolation of four susceptible rps (resistance to P. syringae) mutants. The rps mutants lost resi...

متن کامل

Use of Arabidopsis thaliana and Pseudomonas syringae in the Study of Plant Disease Resistance and Tolerance.

The interaction between Arabidopsis thaliana and the bacterium Pseudomonas syringae is being developed as a model experimental system for plant pathology research. Race-specific ("gene-for-gene") resistance has been demonstrated for this interaction, and pathogen genes that determine avirulence have been isolated and characterized. Because certain lines of both Arabidopsis and soybean are resis...

متن کامل

Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean.

To develop a model system for molecular genetic analysis of plant-pathogen interactions, we studied the interaction between Arabidopsis thaliana and the bacterial pathogen Pseudomonas syringae pv tomato (Pst). Pst strains were found to be virulent or avirulent on specific Arabidopsis ecotypes, and single ecotypes were resistant to some Pst strains and susceptible to others. In many plant-pathog...

متن کامل

Molecular recognition of pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPM1.

The Arabidopsis thaliana disease resistance genes RPS2 and RPM1 belong to a class of plant disease resistance genes that encode proteins that contain an N-terminal tripartite nucleotide binding site (NBS) and a C-terminal tandem array of leucine-rich repeats. RPS2 and RPM1 confer resistance to strains of the bacterial phytopathogen Pseudomonas syringae carrying the avirulence genes avrRpt2 and ...

متن کامل

Soybean resistance genes specific for different Pseudomonas syringae avirulence genes are allelic, or closely linked, at the RPG1 locus.

RPG1 and RPM1 are disease resistance genes in soybean and Arabidopsis, respectively, that confer resistance to Pseudomonas syringae strains expressing the avirulence gene avrB. RPM1 has recently been demonstrated to have a second specificity, also conferring resistance to P. syringae strains expressing avrRpm1. Here we show that alleles, or closely linked genes, exist at the RPG1 locus in soybe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 6 7  شماره 

صفحات  -

تاریخ انتشار 1994